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Impact of six-month COVID-19 travel
moratorium on Plasmodium falciparum
prevalence on Bioko Island,
Equatorial Guinea

Dianna E. B. Hergott 1,2 , Carlos A. Guerra 3, Guillermo A. García 3,
Jeremías Nzamío Mba Eyono 4, Olivier T. Donfack4, Marcos Mbulito Iyanga4,
Restituto Mba Nguema Avue4, Crisantos Nsue Abeso Nsegue4,
Teresa Ayingono Ondo Mifumu4, Matilde Riloha Rivas5, Wonder P. Phiri4,
Sean C. Murphy 6,7,8, Brandon L. Guthrie1,9, David L. Smith 2,10 &
Jennifer E. Balkus 1,11

Importation of malaria infections is a suspected driver of sustained malaria
prevalence on areas of Bioko Island, Equatorial Guinea. Quantifying the impact
of imported infections is difficult because of the dynamic nature of the disease
and complexity of designing a randomized trial. We leverage a six-month
travel moratorium in and out of Bioko Island during the initial COVID-19
pandemic response to evaluate the contribution of imported infections to
malaria prevalence on Bioko Island. Using a difference in differences design
and data from island wide household surveys conducted before (2019) and
after (2020) the travel moratorium, we compare the change in prevalence
between areas of low historical travel to those with high historical travel. Here,
we report that in the absence of a travel moratorium, the prevalence of
infection in high travel areas was expected to be 9% higher than observed,
highlighting the importance of control measures that target imported
infections.

Despite increased efforts and control strategies, Plasmodium falci-
parum (Pf) malaria remains endemic in 85 countries and territories1.
The increased frequency in which individuals move between and
within countries has created added challenges for areas that have
recently eliminated malaria, as well as those working towards

elimination2–10. Bioko Island, Equatorial Guinea, has seen a significant
decrease inmalaria burdenover the past twodecades11; however, there
are several areas of the island, especially urban areaswhere prevalence
is typically lower, that have not yet approached pre-elimination levels.
These urban areas also tend to have a higher proportion of individuals
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who travel between Bioko Island and the mainland of Equatorial
Guinea12, where malaria prevalence is substantially higher7. Several
previous studies suggest that there is a high amount of importation of
malaria toBioko Island in returning travelers13, and that these imported
infections contribute to sustained prevalence in urban areas7,14. How-
ever, previous analyses are based on retrospective reporting of travel
history captured via cross-sectional surveys, and there have been no
studies that have allowed for direct estimation of the impact of
imported malaria cases to prevalence in high travel areas. Better esti-
mates of the contribution of imported cases to malaria transmission
are needed to inform malaria control measures.

In 2020, to address the COVID-19 pandemic and minimize local
transmission of SARS-CoV-2, Equatorial Guinea imposed travel
restrictions throughout the country, eliminatingmovement between
the islands and the mainland fromMarch to September 202015. This,
ostensibly, also eliminated the importation of Plasmodium infections
to Bioko. The travel restriction provides a natural experiment in
which the impact of imported infections can be directly assessed.
Here, we compare the prevalence and odds of malaria infection
before and after the travel restriction in areas that historically have
had a high volume of travel to areas of historically low volume of
travel using a difference in differences analysis. This allows us to
directly assess the impact of imported malaria infection on pre-
valence on Bioko Island.

Data on malaria infection was collected before (2019) and after
(2020) the travel moratorium through a household-based malaria
indicator survey (MIS) with households selected from the whole
island16,17. Using historical reported travel fromMIS between 2015 and
2018, we use the distribution of travel frequency by enumeration area
(EA) to classify areas as high travel (in the top quartile) or low travel
(bottomquartile). In this work, we then compare the change inmalaria
prevalence and odds of infection in high and low travel areas before
and after the travel mortarium to estimate the contribution of
imported malaria to prevalence in high travel areas.

Results
Travel prevalence and sample selection
In 2019 and 2020, there were 109 EAs sampled in the MIS. Based on
2015–2018 data, the range of travel prevalence to the mainland of
Equatorial Guinea in each EA, defined as the smoothed proportion of
individualswhohad traveled in the past eightweeks7, ranged from 1.5%
to 39.9%. We classified the EAs in the top quartile of the travel dis-
tribution ( ≥ 12.2%) as high travel areas, and those in the bottom
quartile of the travel distribution ( ≤ 4.3%) as low travel areas, resulting
in 56 EAs classified as high or low travel areas included in this analysis
(Fig. 1). The distribution of households and individuals in each of the
travel classifications is shown in Table 1. Low travel areas had fewer
individuals sampled compared to high travel areas, consistent with the
population densities of these areas. Analyses were done using data
from 12,128 of the 13,195 (92%) individuals who had non-missing data
for all variables in the final analysis. There were no noticeable differ-
ences in the distribution of covariates in the full data set compared to
the analytic data set.

Malaria prevalence before and after travel restrictions
The unadjusted prevalence of malaria in 2019 was 7.3% in low travel
areas (95% CI: 4.5, 10.1), and 13.6% in high travel areas (95% CI: 12.4,
14.9). In 2020, prevalence in low travel areas increased to 12.8% (95%
CI: 7.2, 18.5) while decreasing to 11.8% in high travel areas (95%CI: 10.0,
13.5), representing a prevalence difference of 5.5% (95% CI: 0.9, 10.1),
and −1.9% (95% CI: −3.2, −0.5), respectively (Table 2). Assuming parallel
trends in high and low travel areas, the Pf prevalence difference in high
travel areas was 7.4% lower than would have been expected in the
absence of the travel moratorium (95% CI: −12.1%, −2.6%), without
adjustment.

A variety of factors known to be related to malaria risk were
compared between 2019 and 2020 within each of the travel groups
(Supplementary Table 1). Of those evaluated, time that individuals
went indoors, insecticide spray coverage, within island travel, and
presence of air conditioning showed significant differences between
years and were included in the final model. The proportion of indivi-
duals who reported going inside their house before 7 pm increased
2.5% in low travel areas (22.5% vs. 25.1%) and 6% in high travel areas
(29.2% vs. 35.4%). The proportion of households sprayed with insecti-
cide decreased in 2020 (35.1%) compared to 2019 (46.9%) in low travel
areas, whereas the spray coverage in high travel areas was higher in
2020 compared to 2019 (57.2% vs. 28.3%), consistent with the targeted
IRS approach of the program18. The proportion of respondents who
indicated they traveled within the island (and spent at least one night
away from their home) in the past eight weeks decreased from 2019 to
2020 in both low travel areas (18.8% vs. 13.3%) and high travel areas
(13.2% vs. 9.1%). The proportion of households with air-conditioning
increased 6% in high travel areas from 2019 to 2020 (32.7% vs. 38.5%).
There were also significant decreases in care-seeking behavior among
respondents who were sick from 2019 to 2020 in both low travel areas
(52.1% vs. 45.2%) and high travel areas (68.4% vs. 58.4%). However,
given that this variable was only available for a small fraction of
respondents, inclusion of this covariatewasonly included in sensitivity
analyses only.

When adjusting for spray coverage, going inside before 7 pm,
within island travel, and air-conditioning, prevalence in lowtravel areas
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Fig. 1 | Map of Bioko Island, Equatorial Guinea, showing enumeration areas
(EAs) selected for the difference in differences analysis. EAs in teal are those in
the top quartile of historical smoothed travel prevalence. EAs in gold are those in
the bottom quartile of historical smoothed travel prevalence. EAs in gray were not
selected for the analysis. EAs outlined in orange and filled with patterned dots are
the areas with known land use changes over the study period.
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increased by 5.8% (95% CI:0.5, 11.0) between 2019 and 2020, but
decreased in high travel areas by 3.4% (95%CI: −5.1, −1.8) over the same
period. After adjustment, the Pf prevalence in high travel areas was
9.2% lower thanwould have been expected in the absence of the travel
moratorium (95%CI: −14.7%,−3.7%). Fullmodel outputs are available in
Supplementary Table 2.

Similar results were seen when evaluating the relationship on a
relative scale. Comparing the change from 2019 to 2020 in high travel
areas to low travel areas, the unadjusted odds of Pf infection after the
travel moratorium were 55% lower in high travel areas (OR =0.45, 95%
CI: 0.29, 0.71) than would be expected. Following adjustment, odds of
infection was 62% lower in high travel areas compared to what would
have been expected based on trends in low travel areas (aOR=0.38;
95% CI: 0.22, 0.63). Full results are shown in Supplementary Table 3
and Supplementary Fig. 1.

Sensitivity analyses
There were three areas on the island, composed of seven EAs, with
known land use changes over the study period thatmay have impacted
risk ofmalaria transmission, outlined by orange in Fig. 1. Three of these
EAs on the western coast were included in our analysis. Evaluation of
estimated prevalence in 2019 and 2020 in these three areas showed
that in two of the three EAs, the observed prevalence difference
between yearswas greater than the average difference in the low travel
group (Supplementary Table 4). When we removed these three EAs
from the analysis, the Pf prevalence difference in high travel areas was
5.4% lower thanwould have been expected in the absence of the travel
moratorium (95% CI: −9.0, −1.7) in the unadjusted analysis and 6.8%

lower than expected in the adjusted analysis (95% CI: −10.5, −3.1)
(Supplementary Table 5). Comparing the relative change from 2019 to
2020 in high travel areas to low travel areas, the adjusted odds of Pf
infection after the travel moratorium were 54% lower in high travel
areas (aOR= 0.44, 95% CI: 0.26, 0.76) (Supplementary Table 3).

There was a decrease in care-seeking behavior in both travel
groups from 2019 to 2020, which may result in fewer malaria infec-
tions being cleared. To evaluate the possible impact of this behavior,
we created an EA level variable for care seeking, calculated as the
proportion of those who were sick that sought care within each EA.
Adding this variable to the model did not change the outcome: after
adjustment, the Pf prevalence in high travel areas was 9.3% lower than
would have been expected in the absence of the travel moratorium
(95% CI: −14.5%, −4.0%). (Supplementary Table 6).

Given that most high travel areas are more urban (stratum 2)
and low travel areas are more rural (stratum 1), we ran the analysis
separately by stratum and conducted an analysis on a subset of
high travel rural areas (n = 5) compared to low travel urban areas
(n = 11) to verify that the observed changes were due to travel and not
other differences between urban and rural areas over the analysis
period. In stratified analyses, the Pf prevalence difference in was
slightly greater rural areas (−10.4%, 95% CI: −19.5%, −1.2%) compared to
urban areas (−8.3%, 95% CI: −14.8%, −1.8%), but the overall trend
remained (Supplementary Table 7). In the subset analysis, results were
similar to the full data set; prevalence in high travel areas decreased
6.9% (95% CI: −15%, 1.5%) more than what was expected in the unad-
justedmodel and 8.5% (95%CI: −18.1%, 1.9%)more than expected in the
fully adjusted model.

Table 1 | Total enumeration areas (EA), households, and individuals sampled in the Bioko Island Malaria Indicator Survey and
included in the difference in differences analysis, stratified by travel area and stratum for 2019 and 2020

Full Data Set Analytic Data Set

Low Travel Areas High Travel Areas Low Travel Areas High Travel Areas

Stratum 1
n(%)

Stratum 2
n(%)

Total
n

Stratum 1
n(%)

Stratum 2
n(%)

Total
n

Stratum 1
n(%)

Stratum 2
n(%)

Total
n

Stratum 1
n(%)

Stratum 2
n(%)

Total
n

Enumeration
Areas

17 (0.61) 11 (0.39) 28 5 (0.18) 23 (0.82) 28 17 (0.61) 11 (0.39) 28 5 (0.18) 23 (0.82) 28

2019

Households
Sampled

498 (0.62) 305 (0.38) 803 179 (0.12) 1356 (0.88) 1535 489 (0.62) 301 (0.38) 790 177 (0.12) 1337 (0.88) 1514

Individuals
Sampled

1334 (0.57) 1021 (0.43) 2355 457 (0.1) 4079 (0.9) 4536 1288 (0.57) 980 (0.43) 2268 431 (0.1) 3818 (0.9) 4249

2020

Households
Sampled

468 (0.64) 268 (0.36) 736 147 (0.11) 1226 (0.89) 1373 438 (0.63) 255 (0.37) 693 136 (0.1) 1178 (0.9) 1314

Individuals
Sampled

1110 (0.57) 848 (0.43) 1958 450 (0.1) 3896 (0.9) 4346 987 (0.57) 734 (0.43) 1721 397 (0.1) 3493 (0.9) 3890

The full data set includes all individuals and their respective households who were tested for Plasmodium falciparum during the survey. The analytic data set includes all individuals and their
respective households who had non-missing data for all variables included in the adjusted analysis.

Table 2 | Number of individuals tested (n),Plasmodium falciparum (Pf)prevalence estimate and95%confidence interval (CI) by
year and travel group

Group and Year Individuals Tested (n) Pf Prevalence (95% CI) Difference in Prevalence (95% CI) Difference in Differences (95% CI)

Unadjusted Adjusted± Unadjusted Adjusted±

Low travel -2019 2268 7.3% (4.5, 10.1) 5.5 (0.9,10.1) 5.8 (0.5,11) −7.4 (−12.1,−2.6) −9.2 (−14.5,−3.9)

Low travel -2020 1721 12.8% (7.2, 18.5)

High travel -2019 4249 13.6% (12.4, 14.9) −1.9 (−3.2,−0.5) −3.4 (−5.1,−1.8)

High travel -2020 3890 11.8% (10.0, 13.5)

Difference in prevalence compares 2020 to 2019 prevalence by travel area. The difference in differences compares to two prevalence differences. Differences are presented for the adjusted and
unadjusted models. Estimates and CIs are derived from linear combinations of the outputs from a design-based linear regression model.
±Adjusted for coverage of Indoor Residual Spraying (IRS), going indoors before 7PM, within island travel, and air conditioning.
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Model Validity
For the results of a difference in differences model to be valid, the
parallel trends assumptionmust hold19. Using data from2015-2018, the
mean prevalence in high and low travel EAs was calculated and plotted
with unweighted data from 2019 and 2020. Figure 2 indicates that the
trend from 2015 to 2019 was similar in low and high travel groups, and
then diverged in 2020 when travel was stopped. A generalized linear
mixed effects model with individual level data of the Pf positivity for
2015 to 2019 among high and low travel areas, with an interaction term
for each year and travel group showed a consistent difference in pre-
valence of around 7% between high and low travel areas. There was no
significant difference in prevalence difference between the two areas
except for 2017, when the difference in prevalence between the two
areas was 2.7% lower than the difference in 2015 (p = 0.005) (Supple-
mentary Table 8). This divergence from trend may have been due to
increased construction in several areas in the low travel group during
this year. Removing those two areas from the model resulted in a
decreased difference (1.9%) which was no longer significant
(p = 0.052). Themodel was repeated using a random sample of 80% of
the data for 50 iterations. The interaction in 2017 was significant in
almost all the iterations (39/50). All other years showed significant
difference in <8% of iterations.

Discussion
Simulationmodels suggest there are areas of Bioko Island inwhich high
proportions of malaria prevalence can be attributed to infections
acquired while traveling to higher burden areas7,13,14. A recent model
suggested that drastically reducing the number of imported infections
between Bioko Island and the mainland could significantly reduce
prevalence in areas with a high proportion of travelers14. However, prior
to 2020, there were, understandably, no intervention studies nor other
data to definitively support the model simulations. Travel restrictions
imposed as a measure to control the spread of SARS-CoV-2 in 2020
provided an opportunity to directly evaluate the impact of imported
infections. We observed that in the absence of travel, prevalence in
historically high travel areas decreased by 2%, while prevalence in low
travel areas increased by 5% over the same period. This suggests that,
assuming parallel trends, in the absence of the travel moratorium, one
would have expected Pf prevalence to be 7% higher in high travel areas
than what was observed. When adjusting for spray coverage, time one
went indoors,within island travel, and air conditioning, thedifference in
trends increased to 9% and remained significant.

In 2019, prior to the travel restrictions, odds of malaria infection
were two to three times higher in areas of Bioko Island with a histori-
cally high proportion of travelers, relative to areas of historically low
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Fig. 2 | Test of parallel trends assumption, showing the estimated mean Plas-
modium falciparum (Pf) prevalence in low travel (gold) and high travel (teal)
areas from 2015 to 2020. The 95% confidence intervals (CI) from the grouped
mean estimates are shown at each point estimate. The dashed line represents
predicted prevalence in 2020 in a counterfactual scenario with no travel mor-
atorium. Prevalence estimates from each enumeration area (EA) in each year are

presented as points, and their size is proportional to the number of individuals
testedwithin the EA. The total number of individuals included in the calculation for
each year is as follows: 2015: high (n = 5889), low (n = 3560); 2016: high (n = 5097),
low(n = 2799); 2017: high (n = 5050), low(n = 2642); 2018: high (n = 4861), low
(n = 2647); 2019: high (n = 4532), low(n = 2354); 2020: high (n = 4346),
low (n = 1957).
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travel. This finding is similar to a 2013 analysis that showed infection
risk was greater in children living in areas with the highest proportion
of travelers13. In 2020, when the movement of individuals was restric-
ted, there was no difference in risk of malaria infection observed in
high travel areas compared to low travel areas. This observation both
further supports the hypothesis that a significant fraction of the Pf
prevalence observed in high travel areas could be explained by
imported infections7, while also suggesting that malaria risk in these
areas is not solelydrivenby importation. Interestingly,whenwe looked
at the impact of travel within urban and rural stratum, the difference in
prevalence in 2019 between high and low travel areas, as well as the
change in prevalence observed overtime and comparing groups, was
greater in the rural strata (−10.4%, 95% CI: −19.5, −1.2) compared to the
urban strata (−8.3%, 95%CI: −14.8, −1.8). This may be explained by the
higher receptivity to onward transmission of imported cases in rural
areas. If this is the case, imported infections would demonstrate a
multiplicative effect on prevalence because they contribute to more
secondary infections than imported cases in urban areas.

Previous analyses have suggested there may be areas where
malaria prevalence is solely attributable to imported infection7, as
several of these locations are in urban centers where there is generally
improved infrastructure and fewer mosquitoes. If this were true, it
would have been anticipated that the risk in high travel areas would be
substantially less relative to low travel areas once importation was
eliminated. However, this analysis showed sustained prevalence and
no difference in odds of infection in the absence of travel. One
explanation for this finding is that there was still residual travel
occurring, even with the travel moratorium, which allowed infections
to continue to be imported during 2020. While a small percentage of
individuals did report travel in the past 8 weeks in the 2020MIS (1%), it
seems unlikely that this would sustain the observed prevalence in the
population of high travel areas. Another explanation is that infections
in high travel areas were acquired through travel to other areas of the
island. There is often frequent travel within the island, especially
between Malabo and areas in the periphery, where the force of infec-
tion is significantly higher12,14. In 2019, residents in both high and low
travel areas reported an average of 1 trip to another part of the island in
thepast 8weeks (range: 1-5 trips),whichdidnot substantially change in
2020. Therefore, it is possible that the remaining prevalence in high
travel areas is from within-island parasite movement. However, there
was no significant difference seen between prevalence in those who
reported within island travel and those who did not in 2020 (Supple-
mentary Table 9), suggesting this does not offer a full explanation. A
final possibility is that high travel areas are receptive to local trans-
mission, and levels of endemic transmission persist even when
imported infections are removed. This is supported by a 2019 inci-
dence study conducted inMalabo,which suggests local transmission is
occurring in peri-urban areas in Malabo district20. In that study, while
travelers tended to be more likely to have an infection, no incident
infections related to travel were identified, supporting the hypothesis
that there is local transmission occurring, even in areas where travel is
common. In addition, recent entomological monitoring in urban
Malabo using human landing catches21 and larval collections have
confirmed the presence of anopheline vectors showing varying levels
of human biting rates and larval densities across the city (Supple-
mentary Fig. 2). Therefore, the results of this analysis suggest that
control strategies that aim to reduce the malaria burden in travelers,
either by reducing the burden in the areaswhere they travel, and/or by
treating returning travelers, would impact the overall prevalence in
several communities in Bioko. Additionally, control measures that aim
to reduce local transmission, such as IRS, distribution of LLINs, and
larval source management should be continued, even if additional
interventions that target imported infections are introduced. Further
analyses are needed to better understand the role of importation and
local transmission at a more granular level.

The interpretation of our results depends on several assumptions.
First, it is assumed that the change in prevalence in low travel areas is a
valid estimate of the changewewould expect in the high travel areas in
the absence of imported infections. That is, the two areas had parallel
trends prior to the elimination of travel19. While it is difficult to defi-
nitively verify this assumption, comparing data in high and low travel
areas from 2015-2019 suggests similar trends over time. In 2017, the
difference in prevalence between the two groups was significantly
smaller than in all other years, possibly due to some large, transient
increases in prevalence in a few low travel areas due to construction
projects. Changes in the ecological landscape are difficult to measure
and may have also differentially impacted low and high travel areas
during our analytic period. For example, an outbreak occurred in 2019
in a low travel area in the south of the Island, because of recent con-
struction that created additional breeding sites22. While there was no
precise measure of land use changes to allow for direct adjustment in
the model, we did have anecdotal information indicating seven EAs
known tohavemajor changes in landuse, threeofwhichwere included
in our analysis. When these EAs were removed from the analysis, the
difference in differences and ratio of ratios were slightly attenuated,
but still of similar magnitude and significance. Therefore, if it were
possible to precisely measure changes in the ecological landscape and
include them in the model, we may expect a slightly lower prevalence
difference, but the conclusions would likely remain the same. Another
variable thatwasnot available at a granular level was rainfall, which can
impact mosquito abundance. Inconsistent secular trends are proble-
matic in DID models if they differentially impact the areas of interest.
While there have been changes in the monthly amount of rainfall over
time on Bioko, there have been increases both in high and low travel
areas, and the assumption is that this would equally impact malaria
transmission potential in these areas. Finally, our model assumes that
enumeration areas were correctly classified as low and high travel
areas. While we have high confidence in the assignment of households
to the correct EA because the survey is managed through a spatial
decision support program18, there are some low travel areas that are
situated immediately next to a high travel area. Given thatmosquitoes
could travel between these two areas, there could be spillover effects
from the imported cases into neighboring areas. If that were the case,
we would expect that the prevalence in these neighboring EAs would
also have decreased in 2020 compared to 2019. That was not
observed, and themean prevalence in these EAs increased 5% between
the years, consistent with the overall observed trends. Calculation of
travel prevalence also does not account for the frequency of trips nor
possiblemalaria preventionmeasures takenwhile in the higher burden
area, which can impact the probability of acquiring an imported
infection. Having more detailed information on infection risk while
traveling or detailed molecular information to classify imported and
locally acquired infections would have allowed us to better delineate
areas with high levels of imported cases.

Despite minimal disruptions to the distribution of antimalarials
during the study period, we did note that limited MIS data suggested
that care seeking decreased by about 10% in both arms between 2019
and 2020, which is similar to data reported through the
DHIS2 surveillance system during this time period (internal commu-
nication with G.A. García). This decrease in care-seeking could result in
increased prevalence, which may be more profound in high travel
areas where there was less care-seeking overall. However, adjusting for
a community-level care-seeking variable in our model did not impact
the results. This is most likely because the decrease was similar in both
arms, and not large enough to heavily influence prevalence.

The emergence of SARS-CoV-2 in early 2020 disrupted health
systems around the world. As countries closed borders, limited
movement, and restricted activities to curtail the initial spread of
COVID-19, other public health programs were impacted. This is espe-
cially true for many malaria-endemic countries, in which COVID-19
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restrictions and global supply chain issues resulted in disruptions in
the distribution of long-lasting insecticide nets, application of insec-
ticides, and availability of anti-malarial medicines15,23,24. The World
Health Organization modeled the potential impact of disruptions to
malaria interventions and estimated these disruptions could increase
cases by upwards of 20% and deaths by greater than 50%, especially in
scenarios where access to treatment was disrupted25. Similar impacts
were seenduring the Ebolaoutbreak in 2014-2015whenhealth systems
were disrupted26–29. However, in these models and analyses, the
potential impact of reducing importation and movement of Plasmo-
dium infections was not considered30,31. This analysis shows that on
Bioko Island, where malaria control interventions remained largely
uninterrupted during the pandemic15, travel restrictions resulted in a
decrease in malaria prevalence in areas with a high prevalence of tra-
velers. It is possible that other areaswith high proportions of imported
infections may also have seen these decreases because of the travel
restrictions, despite other interruptions to the health care system. This
analysis suggests that the impact of COVID-19 on malaria burden may
be underestimated in areas with a high prevalence of travelers. Addi-
tionally, as borders are now open and imported infections return,
malaria control strategy discussions should include interventions that
target these infections to reduce the burden.

Methods
Malaria indicator survey structure
The MIS is carried out annually on Bioko Island between August and
September, as has been previously described16,17. Briefly, information
onmalaria risk factors, including off-island travel in the previous eight
weeks, is collected from selected households. Sampling units are
geographically defined enumeration areas (EAs); under this scheme all
households were eligible for selection into the survey through a stra-
tified, single-cluster survey design. To guide and track programmatic
malaria activities, Bioko Island has been divided into geographically
definedmap areas which are 1 km x 1 km squares32. The 209map areas
that included households were used to define EAs for theMIS. If a map
area had at least 100 households, it was its own EA; if there were fewer
than 100 households in the map area, several map areas were com-
bined (based on geographical proximity) to create an EA with at least
100 households. Before sampling, the EAs were then divided into two
strata based on population density and estimated local residual
transmission (LRT), which is the predicted amount of infections
acquired locally7. To select the sample for the MIS, within each EA, a
simple random sample of households was taken using specified sam-
pling fractions for each stratum: 24% for stratum 1 (areas with lower
population density and higher LRT), and 4.8% in stratum 2 (areas with
higher population density and lower LRT).

All adults provided written consent for testing, and the head of
household consented for anyone under the age of 18. All consenting
individuals who lived in a selected household and were present during
the time of the survey were tested for Plasmodium malaria parasites
using a CareStart Malaria HRP2/pLDH rapid diagnostic test (RDT)
(Access Bio, Somerset, NJ, USA). Individuals who were positive for
malaria by RDT were provided with artemisinin-combination therapy
(ACT) by a Ministry of Health and Social Welfare (MoHSW) nurse per
national policy, based onWorldHealth Organization guidelines33. Data
from the MIS is collected electronically through an ODKCollect form
managed on an in-house Android application.

Sample selection for analysis
Smoothedmainland travel prevalence (the fractionof people surveyed
who reported having traveled to the mainland in the eight weeks prior
to the survey) for eachmap area was estimated using travel data from
the 2015 to 2018 MIS, using the R-INLA package as per methods
described in Guerra et al.7. For map areas with no estimates, the value
from their nearest neighbor was utilized. If an EA was composed of

multiple map areas, a weighted average was calculated from all map
areas in the EA. The weight of each map area was equal to the number
of households in that area out of the total number of households
in the EA.

After a historical travel prevalence was assigned to each EA, those
in the top quartile of travel prevalence were labeled as high travel
areas, and those in the bottom quartile of travel prevalence were
labeled as low travel areas; EAs from the middle two quartiles were
excluded from analysis (Fig. 3).

Statistical analyses
All statistics were performed using R statistical software (v3.6.2).
Analyses of survey data were conducted within the survey package
(v4.1-1). The survey design dataset accounted for the stratified sam-
pling weights of the original MIS as well as the non-independence of
results within households and within EA. The main outcome of inter-
est, Pf positivity, was coded as a binary variable. For each travel area,
the survey mean prevalence was estimated from individual level data
by year and are presented with a 95% CI.

To analyze the possible impact of the travel moratorium on
malaria risk on Bioko Island, a difference in differences analysis was
conducted to compare the difference in prevalence of infection
between 2019 and 2020 in historically high travel areas relative to the
difference inprevalence in historically low travel areas during the same
time. For our main analysis, we fit an unadjusted and adjusted survey
generalized linear model with robust standard errors. To determine
variables to include in the adjusted model, we compared values of
several variables determined to be related to malaria risk a priori
between 2019 and 2020 within travel group. Any variable that had a
meaningful difference between years within a travel group was inclu-
ded in the final model. A meaningful difference was defined as an
absolute change of at least 5% and proportional change of at least 10%.
Analysis was done with observations that had complete data for all
variables in the fully adjusted model. To estimate how the prevalence
of infection in high travel areas changed between 2019 and 2020
relative to the change in prevalence in low travel areas over the same
period, the model included an interaction term between a binary
variable for time and travel. Coefficients and 95% CIs were extracted
for various combinations. The general model is presented in Eq. 1:

Pr RDT+ð Þ=β0 +β1POST+β2hightravel

+β3POST � hightravel +β4Covars + ε
ð1Þ

Where β0 is prevalence of malaria infection in low travel areas in 2019,
β1 is the difference in prevalence comparing 2020 to 2019 in low travel
areas,β2 is the difference in prevalence of infection between low travel
and high travel areas in 2019, and β3 is the difference in differences of
prevalence comparing the change in high travel areas between 2019 to
2020 to the change in low travel areas from 2019 to 2020. β4 repre-
sents a vector given the covariates in matrix Covars that represent the
various covariates included in respective models, and ε is the residual
variance. β3 is the coefficient of interest to estimate the impact of the
travel restrictions on prevalence.

Given that our outcome was binary, we also evaluated the rela-
tionship between odds of infection in high and low travel groups
between years using logistic regression. The samemodels were fit but
utilizing a logit link function. Coefficients and 95% CIs were expo-
nentiated to get comparative odds ratios between years and
travel areas.

Data from the 2015–2018MISwasused to assess the robustness of
the parallel trends’ assumption by visually assessing the trends from
2015 to 2019 in high and low travel areas and fitting a linear mixed
effectsmodel with an interaction term for each year and travel stratum
in the pre-moratorium data34. To test the robustness of the model, we
performed a bootstrapped analysis using a randomly selected 80%
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sample of the data, repeated for 50 iterations. A count of the number
of times each interaction term was significant (suggesting non-parallel
trends) was calculated. For the analysis of parallel trends, non-survey
weighted prevalence was calculated each year, as sample selection in
2015–2018 was not done in the same manner as subsequent years.

There were seven EAs known to have had large land use changes
over the study period, three of which were in our analytic dataset. As
there was not a reliable way to measure land use change in all areas
during the study period, we conducted a sensitivity analysis, in which
the main analysis was repeated with a data set that excluded the three
EAs that were known to have had land use changes over the study
period.

Ethics & inclusion statement
Approval for the annual implementation of the Malaria Indicator Sur-
vey was provided by the Ministry of Health and Social Welfare
(MoHSW) of Equatorial Guinea. This analysis was determined to be
exempt from further IRB review by the University of Washington
Human Subjects Division (STUDY00012460).

The National Malaria Control Program approved the exploration
of this research question. Development of the analysis plan, review of
possible confounders, and discussion of preliminary and final results
was done by a collaboration of local and global researchers. Under-
standing of locally relevant information, such as land use changes and
programmatic challenges during the study period was instrumental in
the correct interpretation of results.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data that support the main findings of this study are available in
the GitHub repository [https://github.com/d-hergott/DID-public]35.

Code availability
Reproducible code for the main analysis is available in the GitHub
repository [https://github.com/d-hergott/DID-public]35.
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