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Newly available datasets present exciting opportunities to inves-
tigate how human population movement contributes to the
spread of infectious diseases across large geographical distances.
It is now possible to construct realistic models of infectious dis-
ease dynamics for the purposes of understanding global-scale
epidemics. Nevertheless, a remaining unanswered question is
how best to leverage the new data to parameterize models
of movement, and whether one’s choice of movement model
impacts modeled disease outcomes. We adapt three well-studied
models of infectious disease dynamics, the susceptible–infected–
recovered model, the susceptible–infected–susceptible model, and
the Ross–Macdonald model, to incorporate either of two candi-
date movement models. We describe the effect that the choice
of movement model has on each disease model’s results, find-
ing that in all cases, there are parameter regimes where choosing
one movement model instead of another has a profound impact
on epidemiological outcomes. We further demonstrate the impor-
tance of choosing an appropriate movement model using the
applied case of malaria transmission and importation on Bioko
Island, Equatorial Guinea, finding that one model produces intel-
ligible predictions of R0, whereas the other produces nonsensical
results.

mathematical epidemiology | infectious disease modeling |
human population movement | malaria

Mathematical models are important tools for understanding
disease transmission, making it possible to estimate the

size, timing, and impact of epidemics and the effectiveness of
interventions. There have been many such mathematical mod-
els adapted and applied to study epidemics that spread across
large geographical regions (1, 2). Many such models are often
motivated by recent pandemics, such as severe acute respiratory
syndrome (3), Ebola virus disease (4), Zika fever (5), and the
2019 novel coronavirus (6). In each of these cases, long-distance
travel of infected human hosts proved to be an important driver
of the spread of infectious disease between geographically sep-
arated populations. Real-world studies of the spatial dynamics
of human infectious diseases must choose an underlying mod-
eling framework for simulating human mobility which is then
parameterized with mobility data and coupled with a model of
disease dynamics. Here, we have conducted a study that focuses
on the consequences which the choice of movement modeling
framework can have on various disease dynamical processes.

Parameterizing realistic models of disease transmission occur-
ring across wide geographical ranges is now possible because of
the recent availability of large, highly detailed datasets describ-
ing human movement patterns (7). Census data attempt to
describe population migration that occurs between census years
(8). Traditional surveys of commuters (9, 10), patients (11, 12),
or residents in disease-affected areas (13, 14) provide another
description of recent travel activity. More recently, mobile phone
service providers have shared privacy-protected datasets, show-
ing how large numbers of users tend to move between cell phone
towers (12, 15–18). Global Positioning System (GPS) trip log-

gers have also recently been used to track study participants’
movement activities (19).

The recent abundance of movement data provides an excit-
ing new opportunity to use models to quantify how human host
movement affects epidemiological outcomes. Nevertheless, each
method of data collected only provides a partial picture of true
movement patterns, and for many studies it is necessary to build
a model of host movement to fill gaps in the data or to synthesize
data coming from many sources. It remains an unanswered ques-
tion how best to use the data to build and parameterize models
representing host movement.

How should one choose to represent movement rates based on
available data? An important consideration is finding a statisti-
cal model that fits adequately well to movement data, accurately
predicting the frequency of travel or flow volume between two
locations. There are already many candidate movement models,
such as gravity and radiation models, which have been evalu-
ated against data in a variety of different settings (13, 18, 20–22).
A fitted movement model, once it has been evaluated as suffi-
ciently accurate, may then be used to set the movement-related
parameters of a mechanistic disease transmission model.

Criteria for selecting a model to parameterize and whether
the choice of model would affect the conclusions of a study has
received much less attention (9, 23). For the purposes of mod-
eling movement to understand infectious disease dynamics, the
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structure of the movement model—the rules which govern how
hosts’ movement patterns are represented—affect the model’s
quantitative behavior and subsequent predicted epidemiological
outcomes. The same travel datasets used to calibrate different
movement models can have different disease dynamics as a con-
sequence of the movement model choice (9). One’s choice of
movement model structure defines the set of parameters which
require fitting and remains distinct from the question of how best
to fit those parameters.

There is an important structural difference between two of the
simplest and most commonly used classes of movement models.
Eulerian movement models specify the rates at which hosts from
one location travel to any other location. Eulerian models do not
track individual behavior, such that after a host moves it has no
memory of its previous location. Lagrangian movement models,
by way of contrast, follow individuals. The class of Lagrangian
movement models includes any model that specifies how fre-
quently hosts travel away from home before returning (23, 24).
The authors of ref. 24 formulate models of vector-borne disease
with Eulerian and Lagrangian host movement but they do not
directly compare the models’ quantitative behavior, inviting fur-
ther questions of when one host movement model might be more
appropriate than another. Depending on the level of detail con-
tained in the available data, one might be able to use the data
to select a class of candidate mechanistic movement models, but
the context for a problem also provides some useful information
about which model might be more appropriate (23). Modelers
whose aim is to understand how movement influences epidemio-
logical outcomes must choose one such mechanistic description
to represent movement.

More generally, there has never been a thorough exploration
of how the modeler’s choice of movement model may influence
modeled epidemiological outcomes. Most early discussions of
metapopulation modeling (e.g., ref. 25) primarily focused on for-
mulating the models, without discussing how one might make
use of travel data for movement model calibration or how to
select a movement model depending on epidemiological context.
More recently, the authors of ref. 26 offer the heuristic advice
that a Eulerian movement model is suited to describing animal
migration while a Lagrangian movement model is more suited to
describing human commuting behavior, but they do not provide
supporting quantitative analysis. At least one study has used the
same travel datasets to calibrate different movement models only
to find that the disease dynamics can change as a consequence of
the movement model choice (9). In some cases, it may be possible
to derive and compare simpler models of disease transmission by
carefully rescaling movement parameters to capture the essen-
tial features of spatial dynamics in a generalized metapopulation
(27). Generally speaking, however, there has not yet been a thor-
ough quantitative investigation into whether the modeler is free
to substitute one model for another for a given epidemiological
setting without affecting the model’s results and conclusions.

When it comes to incorporating movement data into an epi-
demiological model, the problem becomes whether choosing one
mechanistic movement model over another can impact mod-
eled epidemiological outcomes, and whether there are certain
epidemiological settings where one type of movement model
may be more appropriate or accurate. In the present analysis
we explore this problem using compartmental metapopulation
models which integrate together host movement and infectious
disease dynamics. We use three infectious disease transmis-
sion models—the susceptible–infected–recovered (SIR) model,
the susceptible–infected–susceptible (SIS) model, and the Ross–
Macdonald model—which represent a suite of tools for modeling
the transmission dynamics of a wide variety of pathogens. We
adapt each of the disease transmission models to incorporate two
mechanistic representations of movement: The first is a Eule-
rian movement model which we call the Flux model, and the

second is a Lagrangian movement model which we call the Sim-
ple Trip model. We directly compare the Flux and Simple Trip
models by setting parameters such that the total flux of travelers
between each subpopulation remains constant, thus emulating a
case where one might have a single dataset from which one could
calibrate either movement model. We examine how disease
model outcomes can change with different movement models
for each transmission model. For all three transmission models,
we find that the modeled quantities of interest relating to dis-
ease dynamics can differ dramatically depending on one’s choice
of movement model. We conclude by applying this analysis to a
model of malaria transmission and importation on Bioko Island
in Equatorial Guinea (EG) and use intuition based on our prior
analysis to frame our understanding for why the Flux model sur-
prisingly fails to produce meaningful predictions of transmission
intensity in that context.

Methods
Host Movement Models. We use metapopulation models to represent a
network of geographically isolated populations of hosts. Each population
occupies a location where local conditions may affect transmission intensity.
Each population i contains Ni hosts. We assume that the population at each
location remains stable over time—in applied contexts each population may
be calibrated using census or other population data. Disease transmission is
assumed to be completely local, such that hosts from different subpopula-
tions come into contact with one another only if they travel to occupy the
same location. We describe and compare two simple models of host move-
ment, each of which represents a different set of rules governing how hosts
move from one location to another.

The Flux model is a Eulerian movement model which describes hosts as
diffusing from one metapopulation to another (24):

dNi

dt
=−

K∑
j=1

fi,jNi +
K∑

j=1

fj,iNj , [1]

where Ni counts the number of hosts currently located at site i. The total
number of hosts remains constant over time (N =

∑K
i=1 Ni). The constant fi,j

represents the rate at which hosts located at i travel to j, where fi,i = 0 for
all i. The fully specified Flux model requires K(K− 1) parameters.

The Simple Trip model is a Lagrangian movement model which assigns
home locations to each host and describes how hosts travel temporarily to
other locations before returning home (23, 24). Unlike the Flux model, the
Simple Trip model differentiates between the residents and the visitors cur-
rently located at the same site. Visitors are able to interact with residents at
a given site, but they return home at fixed rates:

dNi,i

dt
=−

K∑
j=1

φi,jNi,i +
K∑

j=1

τi,jNi,j

dNi,j

dt
=−τi,jNi,j +φi,jNi,i

. [2]

The notation in Eq. 2 has changed to account for hosts retaining mem-
ory of their home sites: A host from i who is currently located at j will
be counted as belonging to the Ni,j population, and the number of hosts
whose home is i remains constant over time, even if members visit other
sites (Ni =

∑K
j=1 Ni,j). The constant φi,j represents the rate at which hosts

whose home is i travel to j, while the constant τi,j is the rate at which hosts
visiting j from i return home to i. Both φi,i = 0 and τi,i = 0 for all i. The fully
specified Simple Trip model requires 2K(K− 1) parameters.

When the movement equations reach a steady state and the derivatives
on the left-hand side of Eq. 2 equal zero, the population Ni is distributed
across the K metapopulation sites as follows (23):

Ni,i* =
1

1 +
∑K

k=1
φi,k
τi,k

Ni

Ni,j* =
φi,j

τi,j

1

1 +
∑K

k=1
φi,k
τi,k

Ni

. [3]

We can use Eq. 3 to define a “time at risk matrix” ψ where ψi,j ≡Ni,j*/Ni , the
average number of individuals from i found at site j in the steady state, or
the fraction of time on average that hosts who live in site i spend in site j.
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To directly compare the quantitative behavior of both models, we will
assume that in the steady state the total number of hosts moving from one
site to another is the same across both models. That is to say, the number
of people traveling i→ j in the Flux model is the same as the number of i
residents traveling to j + the number of j resident travelers returning home
from i in the Simple Trip model:

fi,j =φi,jNi,i*/Ni + τj,iNj,i*/Ni

=
φi,j

1 +
∑K

k=1
φi,k
τi,k

Ni +
φj,i

1 +
∑K

k=1

φj,k
τj,k

Nj
. [4]

It can be shown under these circumstances that the steady-state popula-
tions in the Flux model Ni* equal the stable populations in the Simple Trip
model. Another property of Eq. 4 is that when we constrain the Flux model
parameters to match the fluxes in the Simple Trip model, the Flux model
parameters become symmetric fi,j = fj,i . Under this condition the fully spec-
ified Flux model only requires K(K− 1)/2 parameters, meaning that more
detailed information is required to parameterize the Simple Trip model than
the Flux model.

SIR Models. The next step is to incorporate both movement models into
three compartmental models of disease transmission. The first such model
is the SIR model, which describes a single outbreak of disease. For a single
population, the deterministic ordinary differential equation SIR model is as
follows:

dS

dt
=−β

SI

N
dI

dt
= β

SI

N
− γI

dR

dt
= γI

. [5]

Combining the basic SIR model with the Flux movement model 1, we obtain
an analogous set of 3K equations (23):

dSi

dt
=−βi

Si Ii
Ni
−

K∑
j=1

fi,jSi +
K∑

j=1

fj,iSj

dIi
dt

= βi
Si Ii
Ni
− γIi −

K∑
j=1

fi,j Ii +
K∑

j=1

fj,i Ij

dRi

dt
= γIi −

K∑
j=1

fi,jRi +
K∑

j=1

fj,iRj

. [6]

The parameters β and γ in Eq. 6 represent the transmission rate and
recovery rate, respectively.

Combining the basic SIR model with the Simple Trip model 2, we obtain
an analogous set of 3K2 equations describing transmission between hosts
while they are at their home location or while they are traveling:

dSi,i

dt
=−βi

Si,i
∑K

k=1 Ik,i∑K
k=1 Nk,i

−
K∑

k=1

φi,kSi,i +
K∑

k=1

τi,kSi,k

dSi,j

dt
=−βj

Si,j
∑K

k=1 Ik,j∑K
k=1 Nk,j

+φi,jSi,i − τi,jSi,j

dIi,i
dt

= βi
Si,i
∑K

k=1 Ik,i∑K
k=1 Nk,i

− γIi,i −
K∑

k=1

φi,kIi,i +
K∑

k=1

τi,kIi,k

dIi,j
dt

= βj
Si,j
∑K

k=1 Ik,j∑K
k=1 Nk,j

− γIi,j +φi,j Ii,i − τi,j Ii,j

dRi,i

dt
= γIi,i −

K∑
k=1

φi,kRi,i +
K∑

k=1

τi,kRi,k

dRi,j

dt
= γIi,j +φi,jRi,i − τi,j Ii,j

. [7]

Note that for both movement models we allow the parameter represent-
ing transmission intensity βi to vary across locations, not across individuals,
representing how transmission intensity reflects the contact network struc-
ture or other local conditions affecting transmission. γ, by contrast, is held
constant for all individuals regardless of location.
SIS Models. Our second disease transmission model is the SIS model, which
can be used to describe persistent endemic disease brought about by cycles

of repeated infection. We adapt the SIS model to include either the Flux or
Simple Trip models to describe movement between subpopulations. For a
single population, the SIS model equation is as follows:

dI

dt
= β

I (N− I)

N
− γI. [8]

Combining the basic SIS model with the Flux model (Eq. 1), we obtain a set
of K equations for transmission in the ith site:

dIi
dt

= βi
Ii (Ni − Ii)

Ni
− γi Ii −

K∑
j=1

fi,j Ii +
K∑

j=1

fj,i Ij. [9]

Combining the basic SIS model with the Simple Trip model (Eq. 2), we obtain
a set of K2 equations among both residents at home and travelers who are
away:

dIi,i
dt

= βi

∑K
k=1 Ik,i∑K

k=1 Nk,i
(Ni,i − Ii,i)− γIi,i

−
K∑

k=1

φi,kIi,i +
K∑

k=1

τi,kIi,k

dIi,j
dt

= βj

∑K
k=1 Ik,j∑K

k=1 Nk,j

(
Ni,j − Ii,j

)
− γIi,j +φi,j Ii,i − τi,j Ii,j

. [10]

Again, in both movement models the transmission intensity βi varies across
locations, not across individuals, and γ is held constant for all individuals in
all locations.

Ross–Macdonald Models. Our third disease model is the Ross–Macdonald
model, which was developed to describe malaria transmission (28, 29). The
Ross–Macdonald model is similar to the SIS model, except it includes a vec-
tor population which serves as a mechanism of transmission from infected
to susceptible human hosts. The Ross–Macdonald model tracks infection
dynamics among human hosts (X) and vectors (Z) and depends on bionomic
parameters (M, a, b, c, g, n; see SI Appendix, section 3 for definitions) which
reflect the environment’s support of the vectors which transmit disease.

The basic Ross–Macdonald model is as follows:

dX

dt
= ba

Z

N
(N−X)− rX

dZ

dt
= ac

X

N
(Me−gn− Z)− gZ

. [11]

The first of Eqs. 11 describes how human hosts become infected through
contact with infectious mosquitoes, while the second describes how
mosquitoes become infected through contact with infectious humans. Set-
ting the derivatives in Eq. 11 to zero represents an endemic equilibrium in
which the local environment may support endemic malaria under the right
conditions. Standard fixed-point analysis of the endemic equilibrium yields
an expression for R0 as a function of bionomic parameters. As long as the
endemic prevalence X∗≥ 0 it is also possible to reformulate R0 as a function
of prevalence (28, 29):

R0 =
rX

N−X
/

r X
N

1 + ac
g

X
N

. [12]

As before, we adapt the basic Ross–Macdonald model by allowing human
hosts to move from one metapopulation to another. At present we will hold
the parameters (r, a, b, c, g, n) to be constant across all sites, while the stable
mosquito population supported by the local environment (Mi) is allowed to
vary across all sites. Incorporating the Flux model into the metapopulation
Ross–Macdonald model (24),

dXi

dt
= (Ni −Xi)ba

Zi

Ni
− rXi +

K∑
j=1

fj,iXj −
K∑

j=1

fi,jXi

dZi

dt
= ac

Xi

Ni
(Mie

−gn− Zi)− gZi

. [13]

We again perform a standard analysis of the endemic equilibrium of Eq. 13
and obtain an expression for the R{i}

0 in each site as a function of prevalence
at each site Xi :

R{i}
0,Flux =

rXi +
∑K

j=1 fi,jXi −
∑K

j=1 fj,iXj

Ni −Xi
/

 r
Xi
Ni

1 + ac
g

Xi
Ni

. [14]
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We also extend the basic Ross–Macdonald model by allowing human hosts
to move from one metapopulation to another as described by the Simple
Trip model. Following the analysis of refs. 17, 24, and 30, we simplify the
analysis of the equilibrium behavior of the metapopulation Ross–Macdonald
model using the time-at-risk matrix ψ. We rewrite the force of infec-
tion experienced by human hosts as a weighted average which combines
local transmission and the average fraction time spent at risk in different
locations:

dXi

dt
= (Ni −Xi)

K∑
j=1

ψi,jba
Zj∑K

k=1 ψk,jNk
− rXi

dZi

dt
= acκi(Mie

−gn− Zi)− gZi

κi =

∑K
k=1 ψk,iXk∑K
k=1 ψk,iNk

. [15]

The expression κi represents the fraction of infectious humans located at
i, accounting for both local residents as well as visitors from other loca-
tions. From the endemic equilibrium of Eq. 15, and following the analysis of
ref. 17, we obtain an expression for R{i}

0 which reflects how the movement
model alters transmission at each metapopulation site:

R{i}
0,ST =

K∑
k=1

(
ψ
−1
)

i,k
rXk

Nk −Xk
/

(
rκi

1 + ac
g κi

)
. [16]

Results
SIR Models. We begin by directly comparing the predicted out-
comes of the two versions of the SIR model with Flux and
Simple Trip movement. We simulate epidemics in two coupled
metapopulations of Ni =500 human hosts by numerically inte-
grating Eqs. 6 and 7 and measuring the size of the outbreak.
The population of susceptibles remaining after the outbreak has
ended S∞ quantifies the size of the outbreak and allows one to
infer R0 (26). Furthermore, S∞ quantifies the population at risk
in subsequent future epidemics, which is relevant for modeling
seasonally recurring pathogens such as influenza (31).

We set γ=1 in all locations, hold β2 constant, and measure the
residual population S∞ in location 1 as β1 varies. We identify two
transmission parameter regimes: β2>γ, which is high enough to
cause an outbreak in location 2, and β2<γ, which in isolation
does not lead to an outbreak in location 2. We also define two
travel parameter regimes, one where travel occurs frequently and
lasts short periods of time (τi,j >γ) and one where travel occurs
infrequently and lasts long periods of time (τi,j <γ). We specify
the parameter values for φi,j and τi,j in each of these regimes
for the Simple Trip model and use Eq. 4 to also parameterize the
Flux model, such that we emulate using the same data inputs to
parameterize both movement models.

Fig. 1 compares how the two SIR models with metapopula-
tion movement behave in different parameter regimes. In all
cases the outcomes are dramatically different, showing that SIR
model predictions depend strongly on how host movement is
represented in the metapopulation model. The two movement
models do agree when transmission parameters are equal in both
locations (β1 =β2), but there are large quantitative differences
whenever there is some heterogeneity in the local transmission
conditions across the different locations.

The major difference between the Flux and Simple Trip mod-
els is that the Simple Trip model constrains the amount of time
that a traveler spends away. For example, the larger residual pop-
ulation for the Simple Trip model, seen in the right-hand column
of Fig. 1, follows from a limit on the amount of time that resi-
dents of population 1 spend in the high-transmission location 2.
Another difference between the Flux and the Simple Trip mod-
els is that hosts in the Flux model have no home residence and
continue to move freely between populations after the outbreak
ends. As a result, as the epidemic dies out the fractions of sus-
ceptibles become constant across all locations. In contrast with
the Simple Trip model, the Flux model effectively erases any evi-
dence that the transmission intensity differed between the two
locations.

A B

C D

Fig. 1. Comparing SIR model results. We numerically integrate Eqs. 6 and 7 to find the size of the residual population of susceptibles following the outbreak.
We plot the residual population fraction in location 1 (S∞1 /N1) as a function of transmission intensity in location 1 (β1/γ) while holding transmission
intensity in location 2 (β2/γ) constant. We explore four different parameter regimes defined by the transmission intensity of location 2 and the duration
of travel. In all four parameter regimes there is a dramatic separation between the predicted outbreak sizes that depends on whether one uses the Flux
(red) or the Simple Trip (blue) model. As long as residents of location 1 travel from a low- to a high-transmission environment (β2 >β1) the Simple Trip
model’s outbreak will be smaller and the residual population will be larger; the opposite is true when residents of location 1 travel from a high- to a low-
transmission environment (β2 <β1). (A) Short travel duration regime (φi = 1, τi,j = 10); low transmission in location 2 (β2 = 0.5). (B) Short travel duration
regime (φi = 1, τi,j = 10); high transmission in location 2 (β2 = 2.5). (C) Long travel duration regime (φi = 0.01, τi,j = 0.1); low transmission in location 2
(β2 = 0.5). (D) Long travel duration regime (φi = 0.01, τi,j = 0.1); high transmission in location 2 (β2 = 2.5).
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SIS Models. We next compare the respective behavior of the SIS
Flux metapopulation model (Eq. 9) and the SIS Simple Trip
metapopulation model (Eq. 10) for K =2 metapopulations of
Ni =500 coupled together. Again, we set γ=1 at all locations.
The outcome of interest for the SIS model is now prevalence,
which we find by numerically solving for the endemic equilbria in
Eqs. 9 and 10. We hold β2 constant and solve for the prevalence
in location 1 (I ∗1 /N1 for the Flux model and (I ∗1,1 + I ∗1,2)/N1 for
the Simple Trip model) as a function of the transmission intensity
in location 1 (β1).

We define two transmission parameter regimes: β2>γ, which
is high enough to sustain endemic transmission locally in location
2, and β2<γ, which cannot locally sustain endemic transmission.
We again define two travel parameter regimes, one where travel
occurs frequently and over short periods of time (τi,j >γ) and
one where travel occurs infrequently and over long periods of
time (τi,j <γ). In each regime we specify travel rate parameter
values for the Simple Trip model and use Eq. 4 to set parameters
for the Flux model.

Fig. 2 shows the results from both the Simple Trip and Flux
models in each of the four parameter regimes. In the short travel
duration regime (Fig. 2 A and B), as long as the transmission
intensity differs between the two locations there is a noticeable
separation between the two movement models’ predicted rela-
tionships between prevalence and local transmission intensity.
In Fig. 2A it is even the case that the apparent critical point,
above which location 1 has sustained endemic disease, changes
depending on which movement model is used.

The discrepancy in the short travel duration regime arises
because the Simple Trip model imposes an extra constraint on
the amount of time a traveler spends away from home. The Flux
model does not specify the amount of time spent away, and its
movement rates (from Eq. 4) tend to overestimate the time spent
away. The Simple Trip model endemic prevalence in Fig. 2A is
elevated because travelers spend less of their time at risk in the
low transmission location 2. Similarly, the Simple Trip model

endemic prevalence in Fig. 2B is suppressed because the amount
of time that travelers from location 1 spend at risk in the high
transmission location 2 is constrained to be smaller. In the long
travel duration regime (Fig. 2, Lower), however, if the trip time
is longer than the disease infectious period there is enough time
for prevalence among travelers to become equal to the preva-
lence among residents of location 2: In this parameter regime,
the Flux model and Simple Trip models converge, because the
constraint on time spent away from home makes less of a
difference.

Ross–Macdonald Models. We examine the behavior of the Ross–
Macdonald models with Flux and Simple Trip movement. We
use the model to represent a malaria-causing pathogen with
a mean infectious period of r−1 =200 d. The outcome of
interest in the Ross–Macdonald model is R0, which quanti-
fies the local transmission intensity required to sustain endemic
malaria at observed prevalence levels. We compare the two
movement models using K =2 connected subpopulations of
Ni =500 human hosts by specifying prevalence and using Eqs.
14 and 16 to calculate R0 for the Flux and Simple Trip
models, respectively. Again, we define two parameter regimes
based on high (X =0.25) versus low (X =0.025) prevalence
in location 2 and another pair of parameter regimes based
on high-frequency, short-duration trips (φi =1/360, τi,j =1/10)
versus low-frequency, long-duration trips (φi =1/72,000, τi,j =
1/4,000). As before, Flux model parameters are defined from
the Simple Trip model parameters using Eq. 4.

Fig. 3 illustrates how prevalence in location 1 varies in relation
to R0 in location 1. As long as the prevalences in each location
are different, there is a dramatic separation between the Flux and
Simple Trip model results, particularly in the short travel dura-
tion regime (Fig. 3 A and B). If travel duration is long, however,
the two models’ predicted relationships between prevalence and
R0 do approach one another. The relationships between preva-
lence and transmission intensity for the two Ross–Macdonald

A B

C D

Fig. 2. Comparing SIS model results. We numerically solve Eqs. 9 and 10 for the prevalence at endemic equilibrium. We plot the endemic prevalence in
location 1 I∗1 /N1 as a function of transmission intensity in location 1 (β1/γ) while holding transmission intensity in location 2 (β2/γ) constant. We explore
four different parameter regimes defined by the transmission intensity of location 2 and the duration of travel. When travel duration is short (Upper), the
Flux (red) and Simple Trip (blue) models produce dramatically different relationships between transmission intensity and prevalence. When travel duration
is long (Lower), the two movement models’ results converge. (A) Short travel duration regime (φi = 0.5, τi,j = 40); low transmission in location 2 (β2 = 0.5).
(B) Short travel duration regime (φi = 0.5, τi,j = 40); high transmission in location 2 (β2 = 2.5). (C) Long travel duration regime, 9φi = 0.005, τi,j = 0.4); low
transmission in location 2 (β2 = 0.5). (D) Long travel duration regime, 9φi = 0.005, τi,j = 0.4); high transmission in location 2 (β2 = 2.5).
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A B

C D

Fig. 3. Comparing Ross–Macdonald model results. We numerically solve Eqs. 14 and 16 to find the relationship between prevalence in location 1 (X1/N1)
and transmission intensity (R0). We plot the relationship between location 1 prevalence (X1/N1) as a function of transmission intensity in location 1 while
holding prevalence constant (X2/N2) in location 2. Note that we plot prevalence on the y axis and transmission intensity on the x axis, to emphasize
how the Ross–Macdonald model behaves similarly to the SIS model (Fig. 2). We explore four different parameter regimes defined by the prevalence of
location 2 and the duration of travel in relation to the average duration of infection (r−1 = 200 d). In the short travel duration regime, there is a large
quantitative difference in the relationship between prevalence and R0 for the two different movement models. In the regime with short travel duration
and high location 2 prevalence (Upper Right), for a given prevalence of 0.2 using the Flux model would suggest low transmission (R{i}

0,Flux < 1), whereas using

the Simple Trip model would suggest high transmission (R{i}
0,ST > 1). In the long travel duration regime, the quantitative disagreement between the two

movement models is less significant. (A) Short travel duration regime (φi = 1/180, τi,j = 1/10); low prevalence in location 2 (X2/N2 = 0.025). (B) Short travel
duration regime (φi = 1/180, τi,j = 1/10); high prevalence in location 2 (X2/N2 = 0.25). (C) Long travel duration regime (φi = 1/72,000, τi,j = 1/4000); low
prevalence in location 2 (X2/N2 = 0.025). (D) Long travel duration regime (φi = 1/72,000, τi,j = 1/4,000); high prevalence in location 2 (X2/N2 = 0.25).

models are qualitatively similar to the one shown previously for
the SIS model in Fig. 2.

There are some ranges of prevalence that are not allowed as
long as R0> 0, such as the Flux model predictions in Fig. 3B. This
occurs when incidence and, by consequence, prevalence among
travelers to location 2 is so high that it raises the base preva-
lence in location 1. For example, in the Flux model shown in
Fig. 3B, the relationship between transmission, movement, and
prevalence specified by the model makes it impossible to rec-
oncile high prevalence in location 2 with very low prevalence
in location 1. The transmission model creates an effective lower
bound on prevalence in location 1, and we interpret prevalence
values below that lower bound as having no valid solution which
is consistent with the transmission model.

Malaria Modeling Example. We further illustrate the quantitative
disagreements between the Flux and Simple Trip models by
applying the Ross–Macdonald models with host movement to
the problem of estimating local R0 (i.e., computed as if there
was no host movement) in a real-world setting. Bioko Island
is located in the Atlantic Ocean about 225 km to the north-
west of mainland EG in Western Africa. From population data
collected during a bednet mass-distribution campaign in 2015,
human population count was estimated to be 239,000 people,
about 85% of whom lived in EG’s capital city, Malabo, in the
north (32). Following the recent efforts of an intensive malaria
control and elimination program (Bioko Island Malaria Elimina-
tion Program, BIMEP), the average malaria parasite rate (PR, a
measure of prevalence) in children 2 to 14 y of age has fallen
from an average of 0.43 to 0.11 between 2004 and 2016, with
further progress appearing to have stagnated since 2015 (33). A
recent analysis of data collected through malaria indicator sur-

veys (MIS) (34–37) has used geostatistical techniques (38) to
map the estimated prevalence of malaria (Fig. 4A) and the esti-
mated probability of a resident leaving (Fig. 4B) across different
locations on Bioko Island (14). The analysis showed an elevated
risk of infection among people who reported traveling recently
(14), a pattern corroborated by other studies (33, 39). In partic-
ular, this suggests that travelers who had spent time in mainland
EG, which still has an estimated mean prevalence of around 0.43
(40, 41), are very likely to bring back infections with them that
would contribute to the sustained endemic prevalence measured
on Bioko Island.

We can use the Ross–Macdonald model to infer local trans-
mission intensity, described by the local R0, based on the known
prevalence and travel behavior. We treat each of the pixels shown
in the maps in Fig. 4 as its own subpopulation with its own local
transmission environment, which allows the model to contain the
spatial heterogeneity known from the data. We use the popula-
tion data to set the population Ni and the geospatial estimates to
set the prevalence Xi/Ni at each location. For the travel param-
eters we use trip destinations reported in the MIS (37, 42) to fit
a multinomial probability model of destination choice. Together
with the travel frequency data (Fig. 4B), we find a set of travel
frequency parameters {φi,k}, illustrated in Fig. 4C. We use MIS
data on trip duration (37, 42) to fit an exponential model of trip
duration and find that travel within Bioko Island and to mainland
equatorial had a mean duration of τ−1

i,BI =21.2 and τ−1
i,EG =10.3 d,

respectively (further details can be found in SI Appendix, section
2). The rate parameters fi,j for the Flux model were calculated
using Eq. 4.

In this way, we construct a fully parameterized pair of Ross–
Macdonald models with movement between subpopulations,
from which we can infer the transmission intensity in each
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A B C

Fig. 4. Parameterizing Ross–Macdonald model from data. (A) Prevalence (parasite rate, Xi/Ni) map, estimated from the MIS collected parasitemia mea-
surements, data from ref. 14. Each pixel shows the mean estimated prevalence within a 1- × 1-km2 area. (B) Travel “prevalence” map, reproduced with
permission from ref. 14, where each pixel shows the probability that a resident leaves home during an 8-wk survey period. (C) Modeled rates of travel {φi,k}
for each of four example pixels, estimated from MIS data reporting recent travel. Arrows pointing off-island represent travel to mainland EG. Arrow weights
are proportional to rate of travel from origin pixel to each of the seven destination regions, or the sum total rate of travel to all of the destination pixels
within each region.

location on Bioko Island. Fig. 5A maps estimates of R0,Flux calcu-
lated using the Flux model (Eq. 14). The dark pixels of the map
represent areas where there is no valid solution for R0,Flux. In
these locations, the rate at which people become infected while
traveling is too high for the transmission model to reconcile local
transmission intensity with local prevalence and the volume of
imported infections. Fig. 5B maps estimates of R0,ST calculated
using the Simple Trip model (Eq. 16). In contrast with the Flux
model, the R0,ST estimates are easier to interpret. Local trans-
mission R0,ST≥ 1 along the northwest coast and around Riaba.
R0,ST≤ 1 in many places in Malabo, suggesting that the sustained
prevalence in this urban area may be attributable to travelers
returning from the mainland with imported infections. Fig. 5C
compares the distributions of R0,Flux and R0,ST, further contrast-
ing the two sets of predictions and further illustrating how the
Flux model fails to produce meaningful results in some areas.

We frame our understanding of these results in terms of the
K =2 subpopulation example discussed previously for the Ross–
Macdonald model. Each subpopulation on Bioko Island exists
in a parameter regime where travel duration is short (τi,j >
r) and the prevalence in the off-island travel destination is
higher than the local prevalence. We recall the results shown
in Fig. 3A, where we see how for low prevalence values the
Flux model tends to underestimate R0 compared to the Sim-
ple Trip model. The Simple Trip model constrains the amount
of time that travelers spend on mainland EG and therefore
reduces the number of people who return home from travel-
ing with malaria infections. The Flux model does not include
such a constraint, and in this parameter regime we see how
in some locations the rate of imported infections is so high
that the model breaks down and does not allow meaningful
values of R0,Flux.

A B C

Fig. 5. Modeled estimates of R0. All modeled estimates were generated using the same prevalence and travel data, illustrated in Fig. 4. (A) R0,Flux, cal-
culated using the Flux model (Eq. 14) parameterized with the input data shown in Fig. 4. Dark gray denotes areas where there is no valid solution for
R0,Flux, meaning that according to the Flux model travelers are subject to too high transmission risk when on the mainland. (B) R0,ST, calculated using
the Simple Trip model (Eq. 16) parameterized with the input data shown in Fig. 4. (C) Histograms comparing the distributions of R0,Flux and R0,ST cal-
culated across the island. (Inset) The full range of the Flux model results. The dark gray column of values counts the areas where R0,Flux has no valid
solution.
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Discussion
We have shown that models of infectious disease dynamics
are sensitive to the choices that modelers make when includ-
ing movement-mediated interactions between subpopulations.
To do so, we have adapted each of three transmission models to
include two types of movement between subpopulations. For all
three transmission models we have identified parameter regimes
where choosing to incorporate one movement model instead of
the other will result in dramatically different results. Specifically,
when there is a difference in transmission intensity between two
interacting locations, and when mean travel duration is short
compared to the mean duration of infection.

In all instances we set movement parameters to match the
total flux of individuals moving between each pair of subpop-
ulations. In this way, we have emulated a situation where the
modeler has a single movement dataset and must choose which
movement model to implement. The full impact of the choice of
movement model became clear from the example of modeling
malaria transmission and importation on Bioko Island: We cali-
brated each of the two movement models using the same dataset
and found that each movement model produced dramatically dif-
ferent results. In some areas, the Flux model and was unable to
produce meaningful values of R0,Flux.

The Simple Trip model, by specifying the rate at which trav-
elers return home, adds a constraint on the amount of time that
travelers spend while away from home. As a consequence, the
Simple Trip model constrains the amount of risk experienced
by travelers. The Flux model has no such constraint: As long
as there are variations in the transmission intensity across dif-
ferent locations there will be significant differences between the
two movement models’ results.

The way that each of the movement models contributes to the
infectious disease model results can lead to real confusion over
the true relationship between transmission intensity and epi-
demiological outcomes. In some applications, as with the Bioko
Island example, the purpose of the model is to infer transmis-
sion conditions, which may be difficult to measure empirically,
based on more readily available prevalence or incidence mea-
sures. Returning to Fig. 2B, we can imagine trying to determine
the transmission intensity β1 based on a measured prevalence
of 0.25. From the Flux model we infer β1< 1, which suggests
that local transmission risk is low. From the Simple Trip model,
however, we infer β1> 1, which suggests the opposite. A simi-
lar inconsistency is illustrated for the Ross–Macdonald model in
Fig. 3B and appears again in the Bioko Island example in Fig. 5.

In the case of modeling malaria transmission and importation
on Bioko Island we have shown how the Flux model is not suit-
able for producing meaningful results. Despite this drawback,
the Flux model remains an attractive option for creating a basic
quantitative description of host movement in other epidemio-
logical contexts. The Flux model requires fewer parameters to
specify completely. For this reason, parameterization is possible
with relatively simple datasets which count the number of indi-
viduals moving from one each location to each other location
over time. Unfortunately, datasets which record flux volumes do
not necessarily lend themselves to parameterizing Simple Trip
models, as they do not distinguish between the rates of leaving
and returning home.

For example, mobile phone call data records (CDRs) are a
source of high-volume datasets for measuring the number of

individuals who travel from one location to another. Often,
for the sake of preserving subscriber privacy, CDRs are aggre-
gated across individual users, time, and geographical area before
becoming public. That is to say, publicly available CDR datasets
count the number of mobile phones traveling from one service
tower catchment area to another on a daily or weekly basis; these
datasets do not record an individual’s rate of leaving home or
time spent while traveling away from home. The loss of indi-
vidual identity from datasets has already been shown to impact
the predicted outcome of disease models in other contexts (9).
While the limits and biases inherent to CDR datasets have been
well-documented (43), the present study suggests an additional
drawback when it comes to using CDR datasets for epidemi-
ological modeling: Because it is not clear that a Flux model is
sufficient to produce accurate modeling results in some contexts,
it is likewise not clear that flux data are sufficient to quantify
travel behavior when building a movement model.

This is not to say that CDR data or flux models are useless
in every context. Our aim is that the present study serves as a
starting point for understanding when the flux model and Simple
Trip model are interchangeable. In some settings, the conclu-
sions may not be affected by the choice of a model, but one needs
to carefully consider the epidemiological context before choos-
ing a movement model. More generally, the question of which
model is appropriate to use in context or how to model the spatial
dynamics of pathogens merits greater attention (9, 23, 27).

The present work is restricted to discussing two basic deter-
ministic models of movement. In theory, one may imagine simi-
larly comparing more detailed and complicated movement mod-
els, such as incorporating travel behavior with multiple stops,
adding stochastic effects, or using agent-based models to incor-
porate movement behavior heterogeneity among the travelers. It
remains to be seen the extent to which such additional model
features might further affect the epidemiological outcomes of
interest. In practice, however, the data required for calibrating
such models may not be readily available, and using a Flux or
Simple Trip description of travel behavior may be more practical.
Even for such simple movement models there is a risk of misus-
ing the travel data that are available to calibrate a movement
model which cannot be reconciled with the data and produces
outputs that are difficult or impossible to interpret.

Supporting Datasets
Refer to SI Appendix, section 4 to find code and data supporting
the analysis presented in Malaria Modeling Example and Figs. 4
and 5.

Data Availability. Data and code supporting the analysis presented in
Malaria Modeling Example have been deposited in Figshare (https://doi.org/
10.6084/m9.figshare.12084831.v2). All study data are included in the article
and/or SI Appendix.
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